- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kurtz, Steven M (2)
-
Allen, Mark (1)
-
Barnes, Emma (1)
-
Basgul, Cemile (1)
-
DeSantis, Paul M (1)
-
Derr, Tabitha (1)
-
Mohammadlou, Bita Soltan (1)
-
Smith, James A (1)
-
Spece, Hannah (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Polyetheretherketone (PEEK) is a member of the polyaryletherketone (PAEK) family of semi‐crystalline thermoplastics that is increasingly considered as an alternative to metals for use in permanent implants. Another member of the PAEK family, polyetherketoneketone (PEKK), has many similar properties to PEEK, but can vary in its crystallization kinetics due to its varying terephthalic and isophthalic acid (T/I) ratios during manufacturing. We hypothesized that PEKK's differences in chemical structure may produce a better surface for cell adhesion, increasing in vitro osteoblastic performance when compared to PEEK. Solid and porous samples were printed under comparable conditions and cultured with MC3T3‐E1 mouse pre‐osteoblasts for up to 28 days. A laser confocal microscope was used to evaluate surface roughness of samples as one possible explanation for differences in in vitro performance. Micro‐CT was used to visualize the accuracy in printing of porous samples when compared to a digital model. PEKK samples were found to have significantly increased cell attachment, normalized alkaline phosphatase activity, and osteoblastic mineralization at multiple time points (p < 0.05). PEKK samples were also found to be significantly smoother than PEEK samples on the micron scale. Based on micro‐CT images, PEKK samples were found to more closely resemble the desired triply periodic minimal surface geometry than PEEK samples. This study suggests that PEKK should be considered in future studies investigating the biological performance of PEEK due to PEKK's encouraging in vitro biocompatibility.more » « lessFree, publicly-accessible full text available September 23, 2026
-
Smith, James A; Basgul, Cemile; Mohammadlou, Bita Soltan; Allen, Mark; Kurtz, Steven M (, Bioengineering)Ultra-high-molecular-weight polyethylene (UHMWPE) components for orthopedic implants have historically been integrated into metal backings by direct-compression molding (DCM). However, metal backings are costly, stiffer than cortical bone, and may be associated with medical imaging distortion and metal release. Hybrid-manufactured DCM UHMWPE overmolded additively manufactured polyetheretherketone (PEEK) structural components could offer an alternative solution, but are yet to be explored. In this study, five different porous topologies (grid, triangular, honeycomb, octahedral, and gyroid) and three surface feature sizes (low, medium, and high) were implemented into the top surface of digital cylindrical specimens prior to being 3D printed in PEEK and then overmolded with UHMWPE. Separation forces were recorded as 1.97–3.86 kN, therefore matching and bettering the historical industry values (2–3 kN) recorded for DCM UHMWPE metal components. Infill topology affected failure mechanism (Type 1 or 2) and obtained separation forces, with shapes having greater sidewall numbers (honeycomb-60%) and interconnectivity (gyroid-30%) through their builds, tolerating higher transmitted forces. Surface feature size also had an impact on applied load, whereby those with low infill-%s generally recorded lower levels of performance vs. medium and high infill strategies. These preliminary findings suggest that hybrid-manufactured structural composites could replace metal backings and produce orthopedic implants with high-performing polymer–polymer interfaces.more » « less
An official website of the United States government
